Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Formaldehyde and Hydroxyl Radicals in an HCCI Engine - Calculations and LIF-Measurements

2007-01-23
2007-01-0049
Concentrations of hydroxyl radicals and formaldehyde were calculated using homogeneous (HRM) and stochastic reactor models (SRM), and the result was compared to LIF-measurements from an optically accessed iso-octane / n-heptane fuelled homogeneous charge compression ignition (HCCI) engine. The comparison was at first conducted from averaged total concentrations / signal strengths over the entire combustion volume, which showed a good qualitative agreement between experiments and calculations. Time- and the calculation inlet temperature resolved concentrations of formaldehyde and hydroxyl radicals obtained through HRM are presented. Probability density plots (PDPs) through SRM calculations and LIF-measurements are presented and compared, showing a very good agreement considering their delicate and sensitive nature.
Technical Paper

HCCI Closed-Loop Combustion Control Using Fast Thermal Management

2004-03-08
2004-01-0943
This study applies Closed-Loop Combustion Control (CLCC) using Fast Thermal Management (FTM) on a multi cylinder Variable Compression Ratio (VCR) engine together with load control, to achieve a favorable combustion phasing and load at all times. Step changes of set points for combustion phasing, Compression Ratio (CR), and load together with ramps of engine speed with either constant load, i.e. load control enabled, or constant fuel amount are investigated. Performances of the controllers are investigated by running the engine and comparing the result with CLCC using VCR, which was used in an earlier test. Commercial RON/MON 92/82 gasoline, which corresponds to US regular, is used in the transient tests. Limitations to the speed ramps are further examined and it is found that choice of fuel and its low temperature reaction properties has large impact on how the CLCC perform.
Technical Paper

HCCI Combustion Phasing in a Multi Cylinder Engine Using Variable Compression Ratio

2002-10-21
2002-01-2858
Combustion phasing in a Homogeneous Charge Compression Ignition (HCCI) engine can be achieved by affecting the time history of pressure and temperature in the cylinder. The most common way has been to control the inlet air temperature and thereby the temperature in the cylinder at the end of the compression stroke. However this is a slow parameter to control, especially cycle to cycle. A multi cylinder engine using Variable Compression Ratio (VCR) for controlling the compression temperature and consequently the combustion phasing is used in the experiments. Operating range in terms of speed and load is investigated in naturally aspirated mode. Trade-off between inlet air temperature and Compression Ratio (CR) is evaluated. Primary reference fuels, isooctane / n-heptane, are used during the tests. High speed HCCI operation up to 5000 rpm is possible with a fuel corresponding to RON 60. The effect of octane number with and without exhaust cam phasing is also investigated.
Technical Paper

HCCI Combustion Phasing with Closed-Loop Combustion Control Using Variable Compression Ratio in a Multi Cylinder Engine

2003-05-19
2003-01-1830
This study applies Closed-Loop Combustion Control (CLCC) using Variable Compression Ratio (VCR) and cylinder balancing using variable lambda to solve the problem. Step changes of set points for combustion phasing, Compression Ratio (CR), and load together with ramps of engine speed and inlet air temperature are investigated. Performances of the controllers are investigated by running the engine at either a constant amount of injected fuel corresponding to an approximate load of 1.5 or 2.5 bar BMEP and/or constant speed of 2000 rpm. Commercial RON 92 gasoline is used in the test. The CLCC is found to be fast and effective and has a potential of handling step changes in a matter of cycles, while the speed and temperature ramps need some more optimization of the CLCC. The CR controller is very fast and has a time constant corresponding to three engine cycles at 2000 rpm.
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

2017-03-28
2017-01-1046
Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
Technical Paper

High-Speed Particle Image Velocimetry Measurement of Partially Premixed Combustion (PPC) in a Light Duty Engine for Different Injection Strategies

2015-09-06
2015-24-2454
It has been proven that partially premixed combustion (PPC) has the capability of high combustion efficiency with low soot and NOx emissions, which meet the requirements of increasingly restricted emission regulations. In order to obtain more homogenous combustion and longer ignition delay in PPC, different fuel injection strategies were employed which could affect the fuel air mixing and control the combustion. In the present work, a light duty optical diesel engine was used to conduct high speed particle image velocimetry (PIV) for single, double and triple injections with different timings. A quartz piston and a cylinder liner were installed in the Bowditch configuration to enable optical access. The geometry of the quartz piston crown is based on the standard diesel combustion chamber design for this commercial passenger car engine, including a re-entrant bowl shape.
Technical Paper

Impact of Multiple Injection Strategies on Efficiency and Combustion Characteristics in an Optical PPC Engine

2020-04-14
2020-01-1131
Partially premixed combustion (PPC) is a promising way to achieve high thermal efficiency and low emissions, especially by using multiple injection strategies. The mechanisms behind PPC efficiency are still to be explained and explored. In this paper, multiple injections have been used to affect the gross indicated efficiency in an optical PPC engine modified from a Volvo MD13 heavy-duty diesel engine. The aim is both to improve and impair the gross indicated efficiency to understand the differences. The combustion natural luminosity is captured by a high-speed camera, and the distribution of fuel, oxygen, and temperature during the combustion process has been further explored by CFD simulation. The results show that with the right combination of the pilot, main, and post injection the gross indicated efficiency can be improved.
Technical Paper

Improving Ion Current Feedback for HCCI Engine Control

2007-10-29
2007-01-4053
In HCCI you do not have the same control of the combustion like in SI and Diesel engines. Controlling the start of a combustion event is a difficult task and requires feedback from previous cycles. This feedback can be retrieved from ion current measurements. By applying a voltage over the spark gap, ions will lead a current and a signal that represents the combustion in the cylinder will be retrieved. Voltages of 450 V were used. The paper describes a new method to enhance the combustion phasing from the Ion current trace in HCCI engines. The method is using the knowledge of how the signal should look. This is known due to the fact that the shape of the ion current signal is similar from cycle to cycle. This new observation is shown in the paper. Also the correlation between the ion current and CA50 was studied. Later the signals have been used for combustion feedback.
Technical Paper

Interaction between Fuel Jets and Prevailing Combustion During Closely-Coupled Injections in an Optical LD Diesel Engine

2019-04-02
2019-01-0551
Two imaging techniques are used to investigate the interaction between developed combustion from earlier injections and partially oxidized fuel (POF) of a subsequent injection. The latter is visualized by using planar laser induced fluorescence (PLIF) of formaldehyde and poly-cyclic aromatic hydrocarbons. High speed imaging captures the natural luminescence (NL) of the prevailing combustion. Three different fuel injection strategies are studied. One strategy consists of two pilot injections, with modest separations after each, followed by single main and post injections. Both of the other two strategies have three pilots followed by single main and post injections. The separations after the second and third pilots are several times shorter than in the reference case (making them closely-coupled). The closely-coupled cases have more linear heat release rates (HRR) which lead to much lower combustion noise levels.
Journal Article

Laser-Induced Phosphorescence and the Impact of Phosphor Coating Thickness on Crank-Angle Resolved Cylinder Wall Temperatures

2011-04-12
2011-01-1292
In order to further improve the energy conversion efficiency in reciprocating engines, detailed knowledge about the involved processes is required. One major loss source in internal combustion engines is heat loss through the cylinder walls. In order to increase the understanding of heat transfer processes and to validate and generate new heat transfer correlation models it is desirable, or even necessary, to have crank-angle resolved data on in-cylinder wall temperature. Laser-Induced Phosphorescence has proved to be a useful tool for surface thermometry also in such harsh environments as running engines. However, the ceramic structure of most phosphor coatings might introduce an error, due to its thermal insulation properties, when being exposed to rapidly changing temperatures. In this article the measurement technique is evaluated concerning the impact from the thickness of the phosphorescent layer on the measured temperature.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine

2015-04-14
2015-01-0793
High-speed OH chemiluminescence imaging is used to measure the lift-off length of diesel sprays in an optical heavy-duty diesel engine of 2 L displacement operated at 1200 rpm and 5 bar IMEP. Stereoscopic images are acquired at two different wavelengths (310 and 330 nm). Subtraction of pairwise images helps reducing the background coming from natural soot incandescence in the OH chemiluminescence images. Intake air temperature (343 to 403 K), motored top dead center density (18 to 22 kg/m3), fuel injection pressure (150 to 250 MPa), intake oxygen concentration (17 to 21 %vol) and nozzle diameter (0.1 and 0.14 mm) are varied and a nonlinear regression model is derived from the experimental results to describe stabilized lift-off length as function of the experimental factors. The lift-off length follows the general trends that are known from spray vessel investigations, but the strength of the dependence on certain variables deviates strongly from those studies.
Journal Article

Lift-Off Length in an Optical Heavy-Duty Diesel Engine: Effects of Swirl and Jet-Jet Interactions

2015-09-06
2015-24-2442
The influence of jet-flow and jet-jet interactions on the lift-off length of diesel jets are investigated in an optically accessible heavy-duty diesel engine. High-speed OH chemiluminescence imaging technique is employed to capture the transient evolution of the lift-off length up to its stabilization. The engine is operated at 1200 rpm and at a constant load of 5 bar IMEP. Decreasing the inter-jet spacing shortens the liftoff length of the jet. A strong interaction is also observed between the bulk in-cylinder gas temperature and the inter-jet spacing. The in-cylinder swirl level only has a limited influence on the final lift-off length position. Increasing the inter-jet spacing is found to reduce the magnitude of the cycle-to-cycle variations of the lift-off length.
Technical Paper

Lift-Off Lengths in an Optical Heavy-Duty Engine Operated at High Load with Low and High Octane Number Fuels

2018-04-03
2018-01-0245
The influence of the ignition quality of diesel-and gasoline-like fuels on the lift-off length of the jet were investigated in an optical heavy duty engine. The engine was operated at a load of 22 bar IMEPg and 1200 rpm. A production type injector with standard holes were used. The lift-off length was recorded with high speed video Different injection pressures and inlet temperatures were used to affect conditions that consequently affect the lift-off length. No matter which fuel used nor injection pressure or inlet temperature, all lift-off lengths showed equal or close to equal lift-off length when stabilized. The higher octane fuel had a longer ignition delay and therefore the fuel penetrate the combustion chamber before auto ignition. This gave a longer lift-off length at the initial stage of combustion before reaching the same stabilized lift-off length. These results indicate that the hot combustion gases are a dominant factor to the lift-off length.
Technical Paper

Numerical Investigation of Methanol Ignition Sequence in an Optical PPC Engine with Multiple Injection Strategies

2019-09-09
2019-24-0007
Methanol is a genuine candidate on the alternative fuel market for internal combustion engines, especially within the heavy-duty transportation sector. Partially premixed combustion (PPC) engine concept, known for its high efficiency and low emission rates, can be promoted further with methanol fuel due to its unique thermo-physical properties. The low stoichiometric air to fuel ratio allows to utilize late injection timings, which reduces the wall-wetting effects, and thus can lead to less unburned hydrocarbons. Moreover, combustion of methanol as an alcohol fuel, is free from soot emissions, which allows to extend the operation range of the engine. However, due to the high latent heat of vaporization, the ignition event requires a high inlet temperature to achieve ignition event. In this paper LES simulations together with experimental measurements on an heavy-duty optical engine are used to study methanol PPC engine.
Technical Paper

Operating Conditions Using Spark Assisted HCCI Combustion During Combustion Mode Transfer to SI in a Multi-Cylinder VCR-HCCI Engine

2005-04-11
2005-01-0109
The Homogenous Charge Compression Ignition (HCCI) operating range in terms of speed and load does not cover contemporary driving cycles, e.g. the European driving cycle EC2000, without increased engine displacement, supercharging, or without excessive noise and high NOx emissions. Hence, the maximum achievable load with HCCI is too low for high load vehicle operation and a combustion mode transfer from HCCI to spark ignited (SI) has to be done. At some operating conditions spark assisted HCCI combustion is possible, which makes a mixed combustion mode and controlled combustion mode transfers possible. The mixed combustion region and the operating conditions are investigated in this paper from lean SI limit to pure HCCI without SI assistance. Parameters as compression ratio, inlet air pressure, inlet air temperature, and lambda are used for controlling the mixed combustion mode. A strategy for closed-loop combustion mode transfer is discussed.
Technical Paper

Operating range in a Multi Cylinder HCCI engine using Variable Compression Ratio

2003-05-19
2003-01-1829
Homogenous Charge Compression Ignition (HCCI) is a promising part load combustion concept for future power train applications. Different approaches to achieve and control HCCI combustion are today investigated and compared, especially concerning operating range. The HCCI operating range for vehicle applications should at least cover contemporary emissions drive cycles. The operating range in terms of speed and load is investigated with a Naturally Aspirated (NA) four-stroke multi-cylinder engine with Port Fuel Injection (PFI). HCCI combustion control is achieved with Variable Compression Ratio (VCR) and inlet air preheating with exhaust heat. Both primary reference fuels and commercial gasoline are used in the tests. HCCI combustion with commercial gasoline is achieved over a load range from 0 to 3.6bar BMEP, and over a speed range from 1000 to 5000rpm. Maximum load is at 1000rpm and decreases with an approximately straight slope to zero at 5000rpm.
Technical Paper

Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-09-15
2020-01-2109
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion.
Journal Article

Optical Characterization of the Combustion Process inside a Large-Bore Dual-Fuel Two-Stroke Marine Engine by Using Multiple High-Speed Cameras

2020-04-14
2020-01-0788
Dual-fuel engines for marine propulsion are gaining in importance due to operational and environmental benefits. Here the combustion in a dual-fuel marine engine operating on diesel and natural gas, is studied using a multiple high-speed camera arrangement. By recording the natural flame emission from three different directions the flame position inside the engine cylinder can be spatially mapped and tracked in time. Through space carving a rough estimate of the three-dimensional (3D) flame contour can be obtained. From this contour, properties like flame length and height, as well as ignition locations can be extracted. The multi-camera imaging is applied to a dual-fuel marine two-stroke engine, with a bore diameter of 0.5 m and a stroke of 2.2 m. Both liquid and gaseous fuels are directly injected at high pressure, using separate injection systems. Optical access is obtained using borescope inserts, resulting in a minimum disturbance to the cylinder geometry.
Technical Paper

Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

2023-08-28
2023-24-0048
This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used.
Technical Paper

Optical Diagnostics of HCCI and Low-Temperature Diesel Using Simultaneous 2-D PLIF of OH and Formaldehyde

2004-10-25
2004-01-2949
Simultaneous OH- and formaldehyde planar-LIF measurements have been performed in an optical engine using two laser sources working on 283 and 355 nm, respectively. The engine used for the measurements was a car Diesel engine converted to single-cylinder operation and modified for optical access. The fuel, n-heptane, was injected by a direct injection common rail system and the engine was also fitted with an EGR system. The engine was operated in both HCCI mode and Diesel mode. Due to the low load, the Diesel mode resulted in low-temperature Diesel combustion and because of limitations in maximum pressure and maximum rate of pressure increase of the optical engine, the Diesel mode was run at a higher EGR percentage than the HCCI mode to slow down the combustion. A third mode, pilot combustion, was also investigated. This pilot combustion is created by an injection at 30 CAD before TDC followed by a second injection just before TDC.
X